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I. INTRODUCTION 

This discussion is concerned with reference systems associated with the 

Goddard General Orbit Determination System and its use. The first section 

deals in a general way with conventions, definitions, terminology and notation. 

Additional details relating to these topics are contained in following sections. 

Many of the conventions employed concerning definitions, terminology and 

notation follow traditional usage as employed for example in Reference 1. Those 

which pertain to the present material a r e  reviewed briefly. Standard notational 

practice is supplemented occasionally in order to facilitate the discussion. 

11. REFERENCE SYSTEMS AND CONVENTIONS 

A. - Coordinate Systems 

Coordinate systems associated with the Goddard General Orbit Determina- 

tion System a r e  referred to the fundamental coordinate systems which a r e  based 

upon the mean equator and equinox of the earth. A typical coordinate system of 

th i s  type is defined in  the following way. The origin of the coordinate system is 

defined to be at the center of mass  of the earth. The fundamental plane of the 

coordinate system is the earth's mean equatorial plane associated with a par- 

ticular epoch which will be denoted by means of a symbol such as t ,  o r  t c ,  t 1, 

. The fundamental direction in this plane is that of the mean equinox 
t2, 

associated with this epoch. The coordinate system is inertially oriented, i.e., 

its reference directions a r e  fixed with respect to the "fixed" stars. The co- 

I ordinate system is a right-handed, orthogonal one. It can be conveniently 
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specified in terms of a triple of unit vectors. The symbols F( t ), - j ( t  ), and k( t 3 ,  

are frequently used for  this purpose. Traditionally, the vector L( t ), is in the 

direction of the vernal mean equinox, the vector k( t ) , is in the direction of the 

earth's north polar axis, and the vector - j ( t  ), is chosen so as to complete the 

right-handed, orthogonal set. For convenience, in the following discussion, the 

symbols 11, ( t ) ,  where i = 1, 2, 3, will be used in lieu o f i ( t ) ,  - j ( t ) ,  and k ( t ) ,  

respectively. When the range of the index is not indicated in what follows, it 

will be understood to be the same as in this case. 

In order to facilitate the discussion, the following notational system will be 

employed to indicate the principal characteristics of the coordinate system. 

The origin will be indicated by means of a prefixed subscript. For example, 

will denote earth-centered and lunar-centered coordinate systems, respectively. 

The fundamental plane and direction will be indicated by means of symbols fol- 

lowing the index. The first symbol will denote the entity with which we as- 

sociate the fundamental plane. Typical choices for this symbol are @ and (c. The 

next symbol o r  symbols will denote the character of the fundamental plane and 

direction, e.g. M for mean, T for true, etc. Thus, for example 
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will denote earth-centered coordinate systems based upon the earth's mean 

equator and equinox, and t rue equator and equinox, respectively. 

If the fundamental plane and the fundamental direction have different char- 

acters ,  two symbols will be used. The first  will denote the fundamental plane, 

and the second will denote the fundamental direction. Thus,  

will denote an earth-centered coordinate system based upon the earth 's  t rue 

equator and a reference direction which will be referred to as the space equinox. 

The precise nature of this coordinate system will be defined later in the discussion. 

When the fundamental plane is the ecliptic, the symbol, C, will appear im- 

mediately following the index. The next symbol will denote the entity with which 

we associate the fundamental direction, and the symbol following it will denote 

the character of that fundamental direction. Thus 

denotes an earth-centered coordinate system based upon the ecliptic and the 

ear th 's  mean equinox, which is defined as the ascending node of the ecliptic on 

the mean equator of the earth. 

In the case of another entity, the fundamental direction will  normally be de- 

fined in analogous fashion, i.e., as the ascending node of the ecliptic on the 

specified equator of the object of interest. The notation will also be analogous. 
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For example, 

denotes a lunar-centered coordinate system based upon the ecliptic and the as- 

cending node of the ecliptic on the t rue  equator of the moon. 

It is helpful, in certain cases, to employ, also, an inertially oriented co- 

ordinate system whose axes coincide, respectively, at the epoch, t ,  with those 

of a set which are associated directly with a body such as the earth. Thus, for 

example, the symbols 

& i $ T G  ( t )  ’ 

will denote an earth-centered coordinate system for which the reference plane 

is the earth’s true equator and the reference direction is on the Greenwich 

meridian plane. 

It is convenient, at times, to employ coordinate systems which a r e  not 

inertially oriented, but are rotating. Generally, in the following discussion, 

sensible rotations can be thought of a s  occurring about an axis which is normal 

to the fundamental plane of an appropriately chosen inertially oriented coordinate 

system. In such cases, the fact that, relative to an inertially oriented coordinate 

system, the coordinate system of interest is rotating about the axis normal to its 

fundamental plane will be indicated by enclosing the symbol for its reference 

direction in pa2entheses. Thus, 

aU-i ~ T ( c )  ( t  ) ’ (2 - 7) 
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denotes an earth-centered coordinate system which is rotating at the earth's 

instantaneous rate of rotation about an axis normal to its fundamental plane, 

which is the earth's true equatorial plane, and whose reference direction is that 

of Greenwich. 

Coordinate systems employed in following discussion will be inertially 

oriented unless the contrary is indicated. 

In order to simplify the notation, when the meaning is clear,  symbols de- 

noting the earth will be understood but not written. For example, the symbols 

will both denote the same coordinate system. 

B. Vectors and Transformations 

The components of a vector, y( t ), referred to a coordinate system, yi (t ), 

can be specified by means of either the row matrix, 

o r  the column matrix, 

where, in each case, 

i =  1, 2 ,  3 ,  and j = 1 . 
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N b  confusion will result i f  we wri te  these, respectively, in the"f0rms 

IIVi ( t )  * 11i 9 

and 

ll11i ( t >  * vi 9 

or, more simply, in the forms 

I/v(t> * lli (t>l( 7 

and 

respectively. 

These repre ntation 

(2-11) 

(2-12) 

(2-13) 

(2-14) 

of a vector, y( t ), in te rms  of its components with 

respect to  the coordinate system, gi ( t  ), will ,  then, denote, respectively, the 

following row and column matrices: 

(2-16) 



The transformation which car r ies  the representation of a vector from its 

components relative to one inertially oriented coordinate system, e.g., gi ( t  1 ) ,  

to its components relative to another inertially oriented coordinate system on 

the same origin, yj ( t  2 ) ,  say, is symbolized by the matrix 

which can be written in the expanded form, 

Thus, one has, for example, 

I = lpijl( 7 

where i, j = 1, 2, 3, and 6 is Kronecker's delta, and 

(2-20) 

(2-21) 

where i ,  j = 1, 2, 3. 

We also note that such a linear transformation is orthogonal if and only if 



and 

Then 

(2-23) 

(2-24) 

Consider the coordinate systems 

described in connection with (2-6) and (2-7). We specify the rotation of the 

latter relative to the former by means of the vector 

which is on the instantaneous axis of rotation, its direction being related to  the 

instantaneous sense of rotation by the rule of the right-hand screw, and its 

magnitude being equal to  the instantaneous rate of rotation. 

We represent th i s  vector by writing, for example, 
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We note that, for a position vector, E( t ), 

(2-28) 

We denote the time derivative of the vector , l (  t ), when it is referred to the 

rotating coordinate system, 

by writing 

or ,  simply, 

and 

(2 -2 9a) 

(2-29b) 

(2-30) 

Similarly, we denote the time derivative of a vector, I( t ), when it is re- 

ferred to an inertially oriented coordinate system such as 

by writing 

(2-31a) 
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of, simply, 

and 

(2-31b) 

(2-32) 

We have 

- 
- l / @ g i ~ T @ ) ) ( ~ )  ( t> l l  ' Il@gi@TG ( t ) '  xL(t)] l l  9 

(2-33) 

where the latter relation follows in view of (2-27) and (2-28). 

We consider next the case of two inertially oriented coordinate systems 

which are oriented in the same way, i.e. whose coordinate axes are, respectively, 

parallel to one another, but whose origins do not coincide. In order to make the 

discu.ssion specific, we select, 

as one of the coordinate systems. 

We  represent the position vector of the center of mass  of the moon, for 

example, in this system by writing 
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and 

II&i@T ( t )  c(t)ll 

We define, then, a coordinate system, 

(2-35) 

a g i @ T ( t )  * (2-36) 

having its origin at the center of mass  of the mocn and its coordinate directions 

parallel, respectively, to those of 

& i @ T ( t )  + 

We denote a position vector referred to  the coordinate system, 

by writing 

and 

l l & i @ T  ( t ) ’  . 

We define the corresponding position vector, 

(2-37) 

(2-38) 

(2-39) 

(2-40) 
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b3f means of the relation 

(2-42) 

and 

l l @ U i @ T  ( t > .  k(t>ll * (2-43) 

W e  denote the time derivatives of &( t ) and c ~ (  t ), respectively, by 

@i<t  ) and & t )  I 

and represent them, respectively, by writing 

(2-44) 

(2-45) 

and 

The correction between these two vector representations is then specified by 

When transformations, such as rotational ones, are independent of the origin 

and the meaning is clear, we  will either omit the symbol denoting the origin or,  

when it facilitates the discussion, w r i t e  a general index symbol, v, denoting the 
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origin and indicate its range, e.g., 

where v = O ,  e. When the range of v is not indicated, this latter range will be 

under stood. 

C. Time Systems 

The Goddard General Orbit Determination System employs both the ephemeris 

time system and the universal time system. 

Definitions of these systems are contained in Reference 1. We employ these 

definitions and, generally, utilize the notational conventions found in that discussion. 

Supplements and other modifications to those conventions will be noted. 

W e  will,  for example, use the symbol, 

T,J ( t )  ’ (2-49) 

to denote the number of Julian centuries of 36525 days, each of 86,400 ephemeris 

seconds, in the interval of ephemeris time from the fundamental epoch, 1900 

January 0 at 12h ephemeris time = 1900 January 0.5 E.T. = J.E.D. 241 5020.0 

E.T., to the ephemeris time, t .  

W e  will use the symbol, 

T,J ( t )  ’ (2-50) 

to denote the number of Julian centuries of 36525 days, each of 86,400 seconds 

of universal time in the interval from the fundamental epoch, 1900 January 0 at 
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l Z h  universal time = 1900 January 0.5 U.T. = J.D. 241 5020.0 U.T., to the 

universal time t e 

.. 

The connection between E.T. and U.T. is written: 

AT = E.T. - U.T. , 

Whenever it is appropriate, we make the interpretation 

AT = E.T. - U.T. 2 . 

(2-51) 

(2-52) 

W e  will use the symbol, 

to denote the number of tropical centuries of 36524, 21988 ephemeris days, each 

of 86,400 ephemeris seconds, in the interval of ephemeris t ime from the funda- 

mental epoch, 1900.0 = 1900 January 0!814 E.T. = J.E.D. 241 5020.314 E.T., 

to the ephemeris time, t. 

We  also write 

(2-54) 

(2-55) 

and 

(2-56) 
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111. COORDINATE TRANSFORMATIONS 

The next portion of the discussion is concerned with transformations. 

A. Fundamental Reference Systems 

A linear transformation of fundamental importance is the one relating co- 

ordinates referred to the mean equator and equinox o€ an epoch, t 1, to coordinates 

referred to the mean equator and equinox of another epoch, t 2 ,  say. 

We particularize our previous discussion by writing, for the case t 5 t,, 

c 0 , 1 , 2  = 50 ( t l 9  t 2 >  

= [2304:‘250 f 1:’396T,, ( t l ) ]  T,, ( t ,  - t l )  

and 

+ 0’.’302T:t ( t ,  - t l )  f 0.’018T2t ( t ,  - t l )  , 

21, 2 = Z ( t l ,  t * )  

f 01’791 TEZt ( t  - t l )  , - - 
5 0 , 1 , 2  

6 1 . 2  = O ( t , ,  t 2 )  

= [20041’682-0:1853TEt ( t l ) ]T, ,  ( t 2 -  t l )  

- 0 1 ‘ 4 2 6 T E Z t ( t 2 - t 1 )  - 01‘042T& ( t 2 - t l )  , 
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eihploying the notation of (2-53) and (2-56). Then, in accordance with Refer- 

ence 1, 
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of this epoch, is indicated as follows: 

1 - &(t)cos  E ( t )  - Q ( t )  s i n  E ( t )  

l l g i T ( t )  '!!jn ( t > ! !  t n$ ( t>cos  E ( t )  1 - k ( t )  

+ &( t )  s i n  E (  t )  A E ( t )  1 

in terms of (2-14) and (2-16) through (2-19). This transformation, 

I 

where i ,  j = 1, 2, 3, is conventionally specified as follows: 

where i ,  j = 1, 2, 3, strictly speaking, we go on to write, in addition: 

(3-1 7) 

(3-18) 
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where i ,  j = 1, 2, 3, where, here,  the symbol 

I 
(3-19) - - 

denotes the fact that the left and right hand members are equivalent to the first 

order. Similarly, 



where we have employed the product matrix 

- - 

I I g i T  ( t l )  * ( t l ) l l - '  

For t < t,, we also have the relation (3-26) where, now, 

l(%T ( t 2 ) '  g i T ( t l ) ( (  = /I%T ( t 2 ) .  Ukn ( t 2 ) l (  

cos [A+( t ) cos E (  t )] s i n  [A+(t)cos ~ ( t ) ]  o 
(3-30) - s i n  [w(t) cosE(t)]  cos [A+(t)cos ~ ( t ) ]  o * 

0 0 1 

:3-2 7) 

It is convenient for certain purposes to employ a coordinate system, 

eU-ieTs ( t )  (3-29) 

which we define in terms of the following linear transformation, 
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Also 

- - 

l/I?.eTS ( t 2 ) '  x(t)ll = /I%TS ( t 2 ) *  YiTS ( t l ) l /  / I g i T S  ( t l )  * v ( t ) l /  ' (3-33) 

where, employing (3-26) and (3-30) through (3-32), we have: 

1 0 - &(t)  s i n  E ( t )  

0 1 - A€( t )  t (3-35) 

A#( t )  s i n  E ( t )  &( t )  1 

in the sense of (3-19). This latter matrix represents the transformation from 

the mean equator and equinox system to  the true equator and space equinox 

system with an accuracy equivalent to that which is associated with the con- 

ventional matrix representation, (3-16), of the transformation from the mean 

equator and equinox system to the true equator and equinox system. Also 

1 0 A $ ( t )  s i n E ( t )  
1 - - 

0 1 A € ( t )  9 

- A $ ( t )  s i n  E ( t )  - A c ( t )  1 

(3-36) 
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in the sense of (3-19). A discussion entirely analogous to  the one following (3-35) 

applies here. Hence we may write, for t =< t2, 

where, employing now (3-1) through (3-14), (3-35) and (3-36), we have: 

/ l%TS ( t 2 )  ' c i T S  (tl)ll = /I%TS ( t 2 )  * %n ( t2 )1 /  

- 1  
/Igkn ( t 2 )  ' g j n  (t l) l l  l I c i T S  ( t l )  ' e j n  (t l) l /  * (3-38) 

h similar fashion, for t 

ing (2-24), (3-1) through (3-14), (3-35) and (3-36) , we write: 

< t,, we have the relation (3-37), where now, employ- 

B. Earth-fixed Coordinate Systems 

The position of the earth, relative t o  the coordinate system, giTs (t) ,  say, 

can be obtained in terms of the following discussion. 

Let t o  ( t ) denote the latest epoch which is not subsequent to t , and for 

which the universal time is Oh. 

Let 

RUG,, [ to ( t  )] = 6h 38" 45s836 + 86 40184s542 Tu [ to ( t  )] 

+ Os0929 T t J  [ to ( t ) ]  . (3-40) 
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Let 

( t )  = RUG,, [to ( t  ) ]  + { 1.00273 7909265 -t 0.589 Tu, [ t o  ( t  )] x 1O-Io) 

x [ t  - t o ( t ) ]  . (3-41) 

The effect of increasing 

in the last  relation by 

say, is entirely inappreciable. 

In the Equation (3-41) which defines RUG, ( t )  , we will, unless otherwise 

specified, reckon the argument, t, in t e rms  of universal time using the measure 

U.T.l. If, for  example, RUGMo [ to ( t  )], and [t - t o  ( t  ;] , are expressed in te rms  

of days of time, then RUG, (t) can be thought of as being expressed in te rms  of 

revolutions of right ascension in Equation (3-41). 

Here, one day is equivalent to 24 hours, or  1440 minutes or 86,400 seconds, 

and one revolution is equivalent to 27r radians o r  360 degrees. 

We  employ, then, the following transformation to express the relationship 

between the coordinate systems, @gi ~ T C  ( t  ), and ~ T S  ( t  ) , 
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where i ,  j = 1, 2, 3, and 

and the intermediate argument is given by the relation (3-41). 

The magnitude of the vector, (t),  Le., the earth’s rate of rotation can be 

expressed as follows 

= 1.00273 78119.06 (3-44) 

revolutions per mean solar day of mean solar time where here we identify mean 

solar time with universal time (U.T.l) and the symbol U in the expressions 

geu ( t  ) and weu ( t )  denotes the fact that these quantities a r e  referred to the 

universal time system. 

We also write 

- - 1.00273 78119.06 
d(t)  (3-45) 

revolutions per ephemeris second, where d( t ) denotes the number of ephemeris 

seconds in the mean solar day at the epoch t. The quantities geE (t), and 

weE ( t  ) are thus referred to the ephemeris time system. Where no confusion 
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will result, we will denote them simply by 

(3-46) 

respectively. 

It is convenient to express the denominator in the right-hand member of 

(3-45) in the following way: 

d ( t )  = 86,400 [ l + s ( t ) ]  . 

The function, s( t ), has,  at times, been of the order of 

(3-47) 

150 x lo-'' , 

Seasonal fluctuations in U.T. 1 were calculated in advance for the years 1956 to 

1960 by means of the formula 

+ Os022 sin 2n t - Os017 cos 2n t 

- Os007 sin477 t t OsO06cos 477 t , (3-48) 

where t denotes the fraction of the year reckoned from January 1. 

The variations in s( t ) associated with this formula are, at times, only half 

an order of magnitude smaller than the value cited above for s( t ). These 

quantities result in velocity corrections which a r e  a couple of orders  of mag- 

nitude smaller than a millimeter per second. Accordingly, for the moment, 

they are negligible. 
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C. An Ecliptic Reference System 

We define an ecliptic coordinate system, 

as follows in t e rms  of the coordinate system, gi 8M ( t ), which is discussed in 

connection with (2-2), (2-8), and (3-1) through (3-14): 

Here E ( t  ), the obliquity of the ecliptic, is given by, 

E ( t )  = 23” 27‘ 08’.’26 - 461‘845 T,, ( t )  

- 0:’0059T~, ( t )  f 0’.’0018lT2, ( t )  , 

(3-50) 

(3-51) 

(3-52) 

(3-53) 

in t e rms  of the quantity (2-53). 

This quantity, E ( t ), provides the measure of the angle between the ecliptic 

and the earth’s mean equator at the epoch t .  When it is appropriate, this quantity 

may be written as e M  ( t  ), and referred to  as the mean obliquity. The symbol 

e T  ( t  ) , will denote the true obliquity which is defined analogously in t e rms  of 

the earth’s t rue equator. Thus, 

E T ( t )  = EM(t)  f AE(t) (3-54) 

25 



D. Lunar Coordinate Systems 

A lunar oriented coordinate system, si(EM ( t  ) , is defined in terms of the 

following discussion. 

Let 

C ( t )  
= 270" 26' 02'.'99 + 1336' 307" 52' 59:'31T,, ( t )  

- 4Y08 T:, ( t )  + OY0068 T:, ( t )  , (3-55) 

and 

Re (t) = 259" 10' 59Y79 - 5' 134" 08' 31y23 T,, ( t )  

f 7%8T& ( t )  + 0Y008T& ( t )  I (3-56) 

in te rms  of the quantity (2-49). 

Here (E( t ) denotes the mean longitude of the moon, measured in the ecliptic 

from the mean equinox of epoch t to the mean ascending node of the lunar orbit, 

and then along the  orbit, and R, ( t  ) denotes the longitude of the mean ascending 

node of the lunar orbit on the ecliptic, measured from the mean equinox of date. 

The inclination of the mean lunar equator to the ecliptic will be denoted by I, or 

by I,, when the latter, more detailed symbol is called for. The ascending node 

of the mean lunar equator on the ecliptic is at the descending node of the mean 

lunar orbit, i.e., at aCc ( t )  t 180". Then, in te rms  of (3-49) through (3-52), and 

(3-56), we have: 
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The prime meridian of the moon is defined to  be on the direction toward the 

earth when the moon is simultaneously at i ts  mean longitude and its mean as- 

cending node. The mean angular distance of the prime meridian of the moon 

from the descending node of the mean lunar equator is then given by, 

p e ( t )  = 180" + c ( t )  - Q,( t )  , (3-60) 

in t e rms  of (3-55) and (3-56). 

A coordinate system associated with the mean lunar equator and the mean 

position of the prime meridian of the moon can be defined in  the following way 

in t e rms  of (3-57) through (3-60). 

The inclination of the true lunar equator to the ecliptic is specified as 

follows : 

The descending node of the true lunar equator on the ecliptic is given by 

c(t)  . (3-65) 
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&e angular distance from the descending node of the true lunar equator on the 

ecliptic to the true position of the prime meridian of the moon is given by 

Expressions for the functions p( t ), a( t ), and T( t ), are due to  Hayn. (Cf. 

References 3 and 4.) 

Coordinate systems associated with the true equator of the moon can then 

be defined in the following way 

in te rms  of (3-49) through (3-52), (3-56), (3-64) and (3-65). Then, in terms of 

(3-66) through (3-69), we define a coordinate system, giCTs ( t), on the basis of 

the t rue lunar equator and a reference direction referred to as the lunar space 

equinox: 



(3-71) 

A coordinate system, gicTp (t), associated with the moon itself, i.e., with 

i ts  true equator and the true position of its prime meridian can then be defined 

simply in the following manner in terms of (3-60) and (3-70) through (3-72): 

2 i CT (p) ( t )  ’ (3-76) 

is then defined in terms of the corresponding inertially oriented coordinate 

system, 

U i C T p  ( t )  7 

in a manner which is entirely analogous to the definition of 

gi eT ( C ) ( t )  

in te rms  of the coordinate system 

e T C  ( t )  ’ 
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wsich was made in the discussion in connection with (2-6) and (2-7). The ro- 

tation of the coordinate system, t ~ ~ ~ ~ ( ~ )  ( t  1, with respect to  the coordinate 

SY stem 9 u I CTp (t), is specified, analogously, by means of the vector, 

which is on the instantaneous axis of rotation of the moon, its direction being 

related to the instantaneous sense of rotation by the rule of the right-hand screw, 

and its magnitude being equal to the instantaneous rate of rotation of the moon. 

The magnitude of this rate of rotation can be expressed as follows: 

(3-78) 

where we derive 

& ( t )  

from (3-55), and make use of the relation: 

p(t)  501'2564 + 01 '0222T, , ( t )  , (3-79) 

which specifies the annual general precession in longitude in te rms  of the quantity 

(2-53). 
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IV. APPLICATIONS 

It is convenient for many purposes involving lunar applications to employ 

the coordinate system, 

C!!i(CTS ( t >  ’ (4-1) 

defined in (3-70) through (3-72), which we associate with an appropriately chosen 

epoch, t say. 

The procedures involved in its use can then be indicated in the following 

way. 

A. Vectors Associated With the Earth 

We transform vectors 

f&) ’ (4-2) 

and their time derivatives, 

&(a )  ( t )  ’ (4-3) 

which are represented, respectively, in the following ways, in accordance with 

the discussion associated with (2-28) through (2-30), in terms of an earth-fixed, 

rotating coordinate system, 

I l ( 8 i @ T ( G )  ( t ) ’  1 & ( ~ ) 1 l  ’ (4-4) 

and 

(4-5) 
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to the correspondjng pectors, 

&( t )  ' and (4-6) 

respectively, which are represented as fol-aws in acco runce  with the discussion 

associated with (2-39) through (2-41) and (2-44) through (2-47) and (3-70) through 

(3-72) in te rms  of the inertially oriented lunar coordinate system which we have 

selected: 

and 

I / C E i C T S  ( t l )  * i(t)l/ (4-8) 

We car ry  out this transformation by means of the following sequence of steps. 

We have, from (2-28) and (2-33) 

l l $ i @ T C  ( t ) '  d(t)/l = ll&!i@T(C) ( t ) '  d(t)ll ' (4-9) 
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We then employ the following transformation which is discussed further below in 

connection with the relation (4-32) : 

B. Vectors Associated With the Moon 

We then transform vectors 

and their time derivatives, 

(4-17) 

+&) ( t )  ' (4-18) 

which are represented, respectively, in the following ways, in accordance with 

the discussion associated with (2-39), (2-44) and (3-76), in te rms  of a lunar- 

fixed, rotating coordinate system, 

(4-19) 
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I 
to the corresponding vectors, 

and & t )  ' (4-21) 
&(t)  ' 

respectively, which are represented as follows, in accordance with the discussion 

~ associated with (3-70) through (3-72), in te rms  of our inertially oriented lunar 

coordinate system : 

and 

(4-22) 

We carry out this transformation by means of the following sequence of steps. 

We  have, from (2-28), (2-33), and (3-73) through (3-76), 



We then employ the following transformation which is discussed further below in 

connection with the relation (4-34) : 

IleyjmS ( t l )  ' &(t) l /  = /IcgjcTS ( t l )  * &icTS ( t ) l l  IlcgimS ( t )  ' cx(t)ll '(4-28) 

and 

(($jas ( '1 )  * c i ( t ) \ l  = //ecjms ('1) * ccims (')/I x ((egims ( t )  c i ( t ) / /  '(4-29) 

It is convenient, in certain cases,  to organize the calculations in the following 

way. 

We consider the following product matrix which is formed on the basis of 

(3-49) through (3-52) and (3-67) through (3-72): 

/I%cTS ( t ) '  g i @ M ( t ) l l  = / ) % c T S  ( t ) * g k Q T ( t ) / /  

/ / U k c T  ( t )  ' gjc@M ( t ) / /  l / g j C @ M  ( t > s  QieM ( t ) / l  ' (4-30) 

W e  note that, in view of the orthogonality relationships which are satisfied, 

(4-31) 

(4-32) 



on the basis of (3-1) through (3-14), (3-36) and (4-30). We also write 

on the basis of the discussion associated with (3-36). W e  also form the product 

matrix: 

/ / u k @ M  ( t l ) * C , @ M ( t ) l l x  I lgicTs(t) 'gj@M(t)/ l  - 1  ' (4-34) 

on the basis of (3-1) through (3-14), (4-30) and (4-31). We note also that 

1 
I l g k @ M  ( t l ) ' u j @ M ( t ) l l x / I g i O T S ( t ) ' g j @ M ( t ) l l  ' (4-35) 

on the basis of (4-31). We note again that, in view of the various orthogonality 

relationships which are satisfied, we have 

from (4-32), and 



1 
l lgk@M ( 1 )  * gj @M ( t  )Illx Il%CTS (t 1) ' Ilk@M (t  1111 ' (4-37) 

on the basis of (3-14) and (4-31), respectively. Hence, 

1 
ll%CTS ( t l )  * g i @ T S  (t)ll-l = /I%CTS ( t l )  g i @ T S ( t ) l l  

' (4-38) 

from (4-36) and (4-37). We also have, similarly, 

1 
(4-39) I 

1 / g k @ M  (t 1) g j @ M  (t)((l ( (%&TS (t 1) * ?k@M (t  1)Il ' 

from (3-14) and (4-31), and, hence, 

1 - 1  - 
/I%&TS ( t l )  * GicETS ( t ) l l  - II%CTS ( t l )  ' U i C T S ( t ) l l  

' 

from (4-39). We also utilize the product matrix 

(4-40) 

which is written on the basis of the relations (3-1) through (3-14), and (4-30): 
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C , Combination and Representation of Vectors and Transfornnations 

In certain cases it is convenient to form and store representations of the 

matrices 

(4-42) 

for i = 1, 2, 0 ,  n, and 

for j = 1, 2, *, m, which were  specified in the relations (4-32) and (4-34), 

respectively. 

Here, to denotes the epoch of the reference coordinate system and, typically, 

0 (4-44) t i  - - to  + i At,, , 

where i = fl, f2, *, fp, and 

t j  = t o  + j ( A t c )  , (4-45) 

where j = fl, k2, a ,  kq, and At, denotes a time interval associated with a 

polynomial representation of the precession and nutation of the moon, and A t  

denotes a time interval associated with a polynomial representation of the preces- 

sions and nutations of the earth and the moon. 

We employ, also, the transformation 
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which utilizes the matrix specified in the relation (4-41). In certain cases it is 

convenient to form and store representations of the matrices 

(4-4 7) 

for i = 1, 2, 0 ,  n, which are obtained by means of the relation (4-46). 

Here, again, to  denotes the epoch of the coordinate system, and typically, 

= to  t i(,At) t i  (4 -4 8) 

where i = 1, 2, 0 ,  m, and ,At denotes a time interval associated with a poly- 

nomial representation of the position and velocity of the moon. 
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